
Color Computer
SMALL C Compiler

1982

DUCiCiER'S CiROWlnCi i SYSTEms

.,

··'

I.

I I.

COLOR COMPUTER C COMPILER NOTES

Diskette contents.

DCSCC.BIN
UPC.BIN
CLIBR.LIB
INCLIB.TXT

LIB.INC

PRIME.TXT

BPRIME.TXT
LISTIT.TXT
LISTIT.BIN
PRIME.BIN
FPOINT.TXT
FPPRT. TXT
UPPRIME.TXT
ULIB.INC

Corrections to the manual.

C compiler - standard (16wer case commands}
C compiler - (upper case commands)
Runtime source library
Runtime source - to be used with LIB.INC
(see procedure below}

Special input file to be added during
compiling.
Example C program - finding all the prime
numbers between 1 and 4096. Set for 10
iterations.
BASIC program same as PRIME.TXT - 1 iteration
Example C program - list a file on the screen.
Execute program for the list program.
Execute program for the prime number routine.
Floating paint functions.
Flo�ting point print function in C.
Prime program in upper case commands.
Special input file to be added during
compiling. (upper case usage>

On page 6-4 under fopen example line
char fildat[12J change toi *fildat
char *fp; change to: int fp;

On page 6-4 under c=getc(fp} example
c=getc(c,fp) change to: c=getc(fp)

III. Special usage of the runtime source.

If your assembler has a LIBS directive, then you can use the

LIB.INC file instead of the CLIBR.LIB during compiling. This

will shorten your compiling time, plus minimize the amount of

storage on the diskette. This uses the INCLIB.TXT file.

Computerware•s assembler has this feature. Use ULIB.INC with UPC.

IV. Prime number example.

To give you an example of the speed of using C vis Basic, run

both PRIME.BIN and BPRIME.TXT. BPRIME.TXT will take about 4 mins.

for one iteration and PRIME.BIN for 10 interations will take

(try it!).

/_

'
-

DGS C COMPILER FOR THE COLOR COMPUTER

DGS C COMPILER FOR THE TRS-80

COLOR COMPUTER

USERS MANUAL VERSION 1.0

DUGGERS GROWING SYSTEMS
P.O. BOX 305

SOLANA BEACH, CALIFORNIA 92075
(619) 755-4373

VERSION 1.0

·-

-

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

PUBLISHED BY DUGGER'S GROWING SYSTEMS
P.O. BOX 305
SOLANA BEACH, CALIFORNIA 92075

BY BRUCE W. DUGGER & JAMES L. WAGGONER

C USERS MANUAL
COPYRIGHT (C) 1982 DUGGER'S GROWING SYSTEMS

All rights reserved. No part of this manual may be
reproduced, copied, or transmitted in any form without prior
written permission from the publisher. While every precaution has
been taken to ensure the correctness of this manual and the
products that it describes, the publisher assumes no
responsibility for any errors or omissions in either this
document or the C Compiler which it describes. No liability is
assumed for damages resulting from the use of the C Compiler
described in this document.

UNIX is a Trademark of Bell Laboratories
DEC is a Trademark of Digital Equipment Corporation

i

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

TABLE OF CONTENTS

SECTION 1
Introduction

1-1
1-1

SECTION 2 2-1
Scope 2-1
Abbreviations 2-1
Color Computer Characters 2-2

SECTION 3 3-1
How to use the C Compiler Features 3-1
Source 3-1
Loading Compiler 3-1
Including Source in Output 3-1
Defining Globals 3-1
Label Numbers 3-1
Output File Name 3-2
Input File Name 3-2

SECTION 4
C Program Source Structure

#Define
Externals
Main ()
#Asm, #Endasm

SECTION 5
Reserved Words
Types, Operators and Expressions

Variable Names
Data Types and sizes
Constants
Comments
Declarations

ii

4-1
4-1
4-2
4-3
4-3
4-3

5-1
5-1
5-1
5-1
5-2
5-2
5-3
5-3

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

Type Modifiers
Arithmetic Operators
Relational/Logical Operators
Comparison Operators
Binary Logical Operators
Unary Expression Operators
Bitwise AND, inclusive OR,
Exclusive OR
Left Shift-Right Shift

Control Flow
Statements and Blocks
If-Else
Else-If
While
Break and Continue
Return
(;) Semicolon

Functions and Program Structure

SECTION 6
DGS 6809 C Runtime Library

getchar ()
putchar ()
print£ ()
scan£ (l
fopen ()
fclose()
getc ()
putc ()

Utility Functions

5-4
5-5
5-6
5-6
5-6
5-7

5-7
5-8
5-10
5-10
5-10
5-11
5-11
5-12
5-12
5-12
5-13

6-1
6-1
6-2
6-2
6-2
6-3
6-4
6-4
6-4
6-4
6-5

SECTION 7 7-1
The Differences Between DGS C
For The Color Computer And Standard C 7-1

APPENDIX A A-1
Sample C Program A-1

APPENDIX B B-1
DGS C Error Codes B-1

APPENDIX C C-1
DGS C Compiler Trouble Report C-1

INDEX I-1

iii

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

Section 1. INTRODUCTION

C was originally designed for and implemented on the UNIX
operating system on the DEC PDP-11, by Dennis Ritchie. The
operating system, the C compiler, and essentially all UNIX
applications programs are written in C.

What is C?

C is a general purpose programming language which features
economy of language, modern control flow and data structures, and
a rich set of operators. Callows you to write your programs
clearly and simply. Linkage conventions encourage modularity and
good program organization, making changes and debugging easier.
C is not tied to any particular area of application. Absence of
restrictions and its generality make it more convenient and
effective for many tasks than supposedly more powerful languages.

What is the difference between a BASIC Interpreter and the C
Compiler?

A BASIC Interpreter {or any interpreter) reads a source file
written in BASIC {from disk, tape, or RAM) and "interprets" each
line or statement every time the line is executed. Take for
example the BASIC statement" B =A* C + 32/7 ", every time this
statement is executed {it may be inside a loop of 100 iterations)
the BASIC interpreter must take the number 32 convert it to
hexadecimal, take the number 7 and convert it to hex, divide
them, find the memory location of C, determine its type {integer,
single precision, double precision, etc.), convert the quotient
to the same type, add the quotient and C, find the memory
location of A, determine its type, convert the sum to the same
type, multiply the sum times A, find the memory location of B,
determine its type, store the results of the multiplication in B.
Needless to say this takes time.

The actual execution of A* C + 32/7 is but a fraction of the
time expended looking up variables, determining their type,
converting types, etc. The C Compiler (or any compiler) reads a
source file and "compiles" the file into object (machine
language) code. This means that all the variable locations are
determined one time and when the code is executed the computer
knows exactly where the variables and constants are located.
This plus the fact that the C compiler subroutines are generally
more efficient (because a compiler is less flexible than an
interpreter) allows tremendous gains in execution speed.

As an example a program to determine all the prime numbers
between 1 and 10,000 ran for 4 minutes and 50 seconds Con a 6809
system with a 2 megahertz clock) when written in BASIC
interpreter mode. The same program written in C for the same
system ran in 3.2 seconds, or 90 times faster.

1-1

. -

·-

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

The other major advantage of a compiled program over a BASIC
interpreter program is memory savings. In a BASIC program every
line of the program must be in memory while it is executing .
Each of the lines must be read before BASIC determines the
processing required. This includes comments and every unused
space in the program. When you see a BASIC program that is all
bunched up without spaces or comments, the programmer was
probably trying to reduce memory requirements and speed up
execution. With a compiler there are actually three versions of
the program. The first is the program source written in C,
FORTRAN, COBOL, or even BASIC. The compiler "compiles" this
program and produces an "assembly language" version of the
program (assembly language looks like" LD HL,(40H), ADD HL,DE ,
LD (44H), HL, ETC."). This version of the program is then
"assembled" into machine language (machine language looks like
"2A400019224400" for The example above). The machine language
version is all that is required in memory to execute the progra m.
The programmer can comment his programs, spread them out with
spaces and tabs and practically ignore the memory limitations
while at the same time improving his execution speed by a facto r
of almost 100.

C is a high level language that generates code close to the
machine upon which it is intended to run. C is designed in such a
way that it generates efficient code, very close to the
efficiency that could be obtained by writing in assembly language
(without all the problems that assembly language programs
present in documentation and maintenance). In fact most C
compilers generate assembly language code as an output that is
then run through an assembler for the target machine. This
provides the opportunity for the programmer who just cannot
resist "bit fiddling" to "optimize" the assembly code for his
special routines while maintaining the "mundane" code in the
original C output version.

What is DGS 6809 C?

DGS 6809 C is a compiler which compiles a subset of the C
language. The aim is not to support the full C language, but
rather to support enough of a subset to be able to create C
programs which would be compatible with standard C. Then, as the
compiler expands, more and more features could be added to bring
it close to its full capabilities.

1-2

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

Section 2. SCOPE

This manual has been designed to provide the user with the
details on the features of C available in this implementation and
how to use them. To obtain a detailed tutorial on the usage of
the C language, consult The C Programming Language by B. w.
Kernighan and D. M. Ritchie: Prentice-Hall.

The rest of this manual is presented as follows;

Section 3
Section 4
Section 5
Section 6
Section 7

Abbreviations:

How to use the Compiler
C Program Source Structure
C Program Statements and Use
DGS 6809 C Runtime Library
TRS-80 Color Computer C Compiler
VS Standard C Compiler

The following list of terms, symbols, and abbreviations is
used throughout this manual.

argl,arg2 Abbreviation for argument used as input to a
function

char charater data type (reserved word)

er Carriage return or line feed or just return
depending upon the terminal used .

func Abbreviation for function

int integer data type (reserved word)

{} Braces used to define beginning and ending of
a group of statements within function or main
program

NOTE: Braces ({}) are not available on the Color Computer .

@ $

/* "*/

n n

The "at sign" (@) will be used for the left brace .
The "dollar sign" ($) will be used for the right
brace. The braces will be shown in parentheses when
the"@" and"$" are used to remind the user .

Color Computer substitute for braces ({}) .

Delimiters of a comment. Anything between
"/*" and "*/" · · d b C .is .ignore y .

Delimiters of a string of characters.
Defines a string.

2-1

DGS C COMPILER FOR ·rHE COLOR COMPUTER VERSION 1. 0

Abbreviations continued

I I

[]

Delimiters of a character constant.

Contains size of an array or indicates
pointer to an array (if "(]").

.
'

Statement terminator .

COLOR COMPUTER CHARACTERS:

The Color Computer has a limited character set with which to
implement the C Compiler. The following list indicates the Color
Computer characters that should be substituted for "standard" C
characters that are not available:

Standard C Characters

Upper Case A-Z
Numerals 0-9
Lower Case a-z

Special Characters
=,!,",#,%,&,I,(,),*
+,-,/,$,@

{
}
<-

2-2

Color Computer C

Upper Case A-Z
Numerals 0-9
Lower Case a-z
(Shift O (zero))

(Shift 0)
Sarne

(Shift DOWN ARROW)
(Shift RIGHT ARROW)

(UPARROW)
@

$
(Shift UP ARROW)

DGS C COMPILER FOR 'l'HE COLOR COMPUTER VERSION 1. 0

Section 3. HOW TO USE THE DGS 6809 C COMPILER

The compiler source can be created using any standard Color
Computer editor. The source lines must contain a 'er' (carriage
return) for end of line and the characters must be standard
ASCII. Do not use any form of compression on the source file
when saving it. The compiler only recognizes ASCII code.

To start the compiler perform the following operations:

load the C compiler into the machine:

type
type

LOADM "DGSCC" er
EXEC er

compiler replies:
COLOR COMPUTER C COMPILER

by B. W. Dugger
(c) 1982 DUGGER'S GROWING SYSTEMS

INCLUDE C-TEXT ON OUTPUT?

type YES er (or Yer) if you want the input source lines
to be output as assembly comment lines. Type NO er (or N er) to
suppress this option. Including the source lines will increase
the length of your output file and the listing but will provide a
source of documentation for the assembly listing.

compiler replies DEFINE GLOBALS?

type YES er (or Yer) if you want the external or global
data types to be output. If not, type NO er (or N er).

Globals are variables that are defined externally. If the
function or module you are going to compile refers to variables
that are defined elsewhere, then answer the question with NO er
(or N er). When you are ready to compile and link all your
functions and subroutines, collect the GLOBAL definitions in a
single file or module and compile it, answering yes to the
question "DEFINE GLOBALS?". This will cause the compiler to
allocate storage for the GLOBAL variables. When you subsequently
compile the other functions and modules with this external file,
they will access these global definitions . During this
compilation process remember to: compile the file with the global
definitions first, answering YES to the "DEFINE GLOBALS?"
question; compile the subsequent files answering NO to the
"DEFINE GLOBALS?" question.

compiler replies STARTING LABEL NUMBER/

3-1

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

type: a number (1-9999) er or er.

This is the starting label number (ccxxxx) generated by
the compiler to handle program flow. If you are going to merge
this with another C compiled program, then this will allow you to
change the label sequence numbering to avoid duplicate labels.
When merging programs make sure you allow enough sequence numbers
for all labels within the program. The default is 1.

compiler replies: OUTPUT FILENAME?

type: filename specification* er or er.

This is the file where the output from the compile will
be directed, or if just er is typed, it is directed to the user's

terminal.

compiler replies: INPUT FILENAME?

type: filename specification* er or er.

C source input file name to be compiled. At this
point, the compiler will start analyzing the source input and at
completion the compiler will again reply INPUT FILENAME? If
there are additional source files to be added to this compile,
repeat the above. If not, type CLIBR/LIB to include the
runtime library or type er to complete the compile.

* filename specification= filename plus extension . The
'"' (double quotes) are not required.

EXAMPLE:

or
PRIME/TXT
PRIME.TXT

3-2

DGS C COMP ILER FOR 0rHE COLOR COMPUTER VERSION 1. 0

Section 4. C PROGRAM SOURCE STRUCTURE

The structure of a C program is as follows;

(definitions)
#define AMASK
#define ABUF
(externals)
int count,numb;
char alph,bet;
(main program)
main ()
{
(statements)
count=O;

0377
132

/* bit mask*/
/* a line of input*/

/* integer externals*/
/* character externals*/

/* main program*/
/* left brace-groups statement*/

while(count< 10 & numb< 100 & alph -- 'aa')

bet= funcl(count,numb);
#asm
(assembler code)
#endasm
} /* right brace to end group*/

(functions)
funcl(argl,arg2, ... argn)
(argl, arg2, data types)
int argl,arg2;
char arg3,argn;

/* function definition*/

{ /* left brace to start group
of statements*/

(local data types)
int count,buf,num;
char aline[l32];
char bca;
(statements)

/* 132 character array*/
/* character variable*/

count=O;
while(count<lO ..•.....
} /* right brace to end group

function statements*/ of

4-1

DGS C COMPILER FOR THE ~OLOR COMPUTER VERSION 1.0

(Program structure continued)

func2(argl, arg2, ...) /* next function def*/
argl, arg2 data types
{ /* start group of statements*/
local data types

} /* end of program*/

NOTE: Remember to substitute an@ for left braces ({) and
a$ for right braces (}).

Define
The define statement is used to define program constants . A

constant (number, string, mask, etc.) following a "#define" will
be substituted in the source at each place the identifier appears
in the source. Do not use semicolons in a define statement
since these will also be substituted into the source. This
version does not support macro definitions in the "define".

This version does not support the "#undef "so any defines
will be active throughout the source .file. If an identifier is
encountered in the source that has been associated with a define
the substitution will take place unless the identifier is
enclosed in double quotes,

EXAMPLES:
#define LOOPCNT 100 /* loop counter*/
#define STEP 3 /* loop step*/
#define START @ ({) /* start code */
#define END $ (}) /* end code*/

rnai n ()
while(count< LOOPCNT)

START /*replaces@ ({) */
count= count+ STEP
END /*replaces$ (}) */

4-2

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

Externals
Externals are similar to variable definitions and may have

all the same attributes. The difference is that external
definitions must appear before any function or statement
references them and therefore must be placed ahead of the
"main()" statement in a source file. Once an external is defined
it is "known" to all subsequent statements and functions in the
program and need not be re-defined before use. This version does
not support the "extern" statement.

Main
The "main()" statement informs the compiler that this is the

beginning of the program. When the program is executed, the
statements following "main()" will be executed first. The main
statement is also used to delimit externals since by definition
any variables defined ahead of the "main()" statement are
"externals". Since control will be transferred to the statement
following "main()" when the program is executed, a source file
should contain only one "main()" statement. When other files are
"appended", they must be in function format without any "main()"
statement.

In-line Assembly Code
Assembly level code may be included in the source file(s).

The compiler treats all statements between the "#asm" and
"#endasm" as assembly level code. No syntax or error checking is ·
done on these statements. When including low level code in your
source file, you should make certain that the code conforms to
the rules of the assembler for your machine. For instance the
symbology defining comments (/*, */ in C) may be an asterisk in
your assembler.

EXAMPLES:
#asm
SECT4

#endasm

LDA 0,X
ANDA #$7F
CMPA #$1F
BHI SECTS

4-3

Note ASCII Equiv

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

Section 5. C LANGUAGE STA'I'EMENT REFERENCES

The following keywords are reserved by the compiler and
should not be used as labels, variable names, array names ,etc.

RESERVED WORDS

asm
break
char
continue
define
else
endasm
if

int
return
static
while

TYPES, OPERATORS AND EXPRESSIONS

Variable Names

Names are made up of letters and digits; the first character
must be a letter. Upper and lower case are recognized as
different characters (A-Z= 65-90 decimal in ASCII, a-z = 97-122
decimal). The traditional C practice is to use lower case for
variable names, and all upper case for symbolic constants.

Only the first eight characters of an internal name are
significant, although more may be used. For external names such
as function names and external variables, the assembler will
recognize only six significant characters. Certain keywords are
reserved (if,while,return,etc.) and are illegal to use for
variable names.

EXAMPLES:

legal: MAXLINE
A2345
ABCDEF
abcdef

5-1

DGS C COMPILER FOR 'l'HE COLOR COMPUTER VERSION 1. 0

illegal: 2adata
?scanfz

(starts with number)
assembler must have a-z 1st
character

datatypeb
datatypea
define

(not illegal but duplicates
following label)
(reserved word)

Data Types and Sizes

DGS C contains the data types int and char. Int is integer
data type and char is character data type. Do not confuse these
with the BASIC "INT" and CHR$" which actually convert a value to
integer and character.

Data Types

EXAMPLES:

Constants

char

int

int xray;
char papa;

a single byte, capable of holding one
character of data

an integer, a two byte signed value with
range of+ or - 32767.

/* integer variable*/
/* character variable*/

DGS C for the Color Computer allows the following constant
definitions;

- a decimal number (1,2,344,677, 24980,etc)
- a single ASCII character enclosed in

single quotes ('A', 'a', 'z', 'f', etc
- a string enclosed in double quotes, such as;

"this is a string".
- The value constant yielded is a pointer to the first

character of the string (*buf, *char, *s, etc.)

Constants are used to define a value to the program. They
permit the programmer to assign a meaningful name to a value such
as "pi" defined as "3.14159". By using a constant rather than
the actual value in the program you also improve the readability
of your programs and facilitate updating or correcting.

5-2

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

The following are examples of legal and illegal constant
definitions.

EXAMPLES:

Comments

legal: name= "datafile";
data = 'a';
MAXLINE = 100;
sign='D';
loc = *buf;
strng =" DATE
mile = 5280;

TIME";

illegal: code= 'cd'; (to many characters for char
variable- C will used)

value= 65666; out of range for integer
must be -32767 to +32767)

val = 32500 (no semicolon terminator)

Any characters between/* and*/ are ignored by the
compiler; they may be used freely to make a program easier to
understand. Comments may appear anywhere a blank or new line
can. As in the following example.

Main ()
/* this a multi line comment. As long as the

end comment is not used the compiler will ignore
the character stream. */

NOTE: If the end"*/" is omitted, all statements that
follow will be considered as a continuation of
the comment! !

Declarations

All variables must be declared before use. A declaration
specifies a type (int or char), and is followed by a list of
one or more variables of that type.

EXAMPLES:
int lower, upper, down;

char k, line[200];

int array[23];

5-3

/* lower, upper, down all
integer variables*/

/* k = char variable, line
= 200 byte char array* /

/* array= 46 byte
integer array */

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

Type Modifiers

Allowable modifiers of the basic types are:

EXAMPLES:

type *name - declares name to be a pointer to an
element of the specified type.

type name[) - syntactically identical to the above.

int *knum;
int knum[];
char kchr[];
char *kchr;

type name[constant] - declares an array of "constant "
size where each array element is
of the specified type. Examples :

int narray[lOO];

char alpha[l32]

/* narray = 100 value integer
array*/

/* alpha = 132 character
character array*/

"int narray[lOO]" is the BASIC equivalent of
DIM NARRAY (100)

"char alpha[l32]" is the BASIC equivalent of
DIM ALPHA$ (13 2)

5-4

DGS C COMPILER FOR ·rHE COLOR COMPUTER VERSION 1. 0

Arithmetic Operators

The binary arithmetic operators are+,-,*,/, and the modulus
operator%. There is a unary-, but no unary+. Integer
division truncates any fractional part. The expression x%y
produces the remainder when xis divided by y, and thus is zero
when y divides x exactly.

EXAMPLES:

EXAMPLE:

100

200
300
400
500
510

(Assume x=8, y=2, z=3, and w=7)
w = x+y; (w is now = 10)
w = x-y; (w is now = 6)

w = x*y; (w is now = 16)
w = x/y; (w is now = 4)

w = x%y; (w is now = 0)

w = x/z; (w is now = 2 - remember integer division
truncates fractional part)

w = y/z; w is = 0)

w = x%z; w is = 2 - in this case 2 is the remainder
not the quotient)

w = (x*y)- (x* z) ; (w is = -12)

A year is a leap year if it is divisible by 4 but not
by 100, except that years divisible by 400 are leap
years. Therefore:

if(year % 4 == 0 & year% 100 !=O I year% 400 == 0)
(Translation: If variable "year" modulo 4 equals 0

and variable "year" modulo 100 is not equal to 0
or variable "year" modulo 400 equals O)

/* it's a leap year*/
else

/* it's not*/

BASIC equivalent;
IF YEAR/4 = INT(YEAR/4) AND YEAR/ 100 <> INT(YEAR/100)
THEN GOTO 500
IF YEAR/400 = INT (YEAR/400) THEN GOTO 500
REM ITS NOT A LEAP YEAR

REM IT'S A LEAP YEAR

5-5

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

Relational and Logical Operators

Comparison Operators

Comparison operators compare two expressions and yield
either zero or a one depending whether the result of the compare
is false or true, respectively.

Comparison operators are:

"==" - test for equality
"! =" - test for inequality
"<" - test for less than
">" - test for greater than
"<=" - test for less than or equal to
">=" - test for greater than or equal to

EXAMPLES: (Assume; x = -3, y = 2, z = 5 , w = 4

if(x+y == 0 (will yield 0, or false)
if(y+z != 0 (will yield 1, or true)

if(X != y (will yield 1, or true)

if(y+z >= 7 (will yield 1, or true)

if(x+y >= 0 (will yield o, or false)
if (x > y) (will yield 0, or false)
if (x != (y-z)) (will yield 0, or false)

Binary logical operators
Binary logical operators (Boolean operators) compare two

binary values on a bit by bit basis and set or clear bits in the
result (true= set, false= clear).

"I" - yields the logical inclusive "or"
of the expressions (use"#" for color computer) .

"&" - yields the logical "and".

"=" - assigns the value of the expression
on the right to the one on the left.
Since evaluation is done right to left
syntaxes like:

X = y = z = O;
are legal.

EXAMPLES: (Assume; x=-3, y=2, z=7, w=9)

if(x~O I y>O) (will yield 1, or true since y=2)
if(x<=O & y>= 0) (will yield 1, or true)
if(x+y>=O & y+z>S) (will yield 0, or false)

5-6

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

Unary expression operators are:

11- 11
- forms the two's complement of

the expression (minus).
"*" - refers to the element pointed to by

the expression
(providing the expression is a pointer).

"&" - evaluates the address of the given
expression, providing it has one.
Hence, "&count" yields the address of
the element "count". &1000 is an error.

"++"- increments the expression by one. If
this appears before the expression, it
increments before using it. If it
appears after it, it will increment it
after. If this operator is applied to
an integer pointer, it will increment
by 2.

"--"- decrements the expression by one. This
works just like "++" but subtracts one
rather than adding one.

"!" - this operator produces a O (false) if the value
of the expression is non-zero (true), and a 1
if the value is zero (false).

EXAMPLES: (Assume ; x = -3, y = 2, z = 5, w = 4)
w = -y; (w = -2 in twos complement form)
*w = &x; (w = a pointer variable containing

w = ++y;
w = y++;
w = --x;
++y;
--y;
W = X = y = z;

the address of the variable x)
Cw = 3, y = 3)
(w = 2, y = 3)
(w = -4)
(y = 3)
(y = 1)
(w,x,y, and z all = 5)

Bitwise AND, inclusive OR, exclusive OR

AND(&)
The bitwise "and" operator is used to compare two integer

variables or a variable and a "mask" (a bit pattern of ones and
zeros). For each bit set (=l) in the mask- the corresponding bit
in the other variable remains the same. For each bit not set (=0)
the corresponding bit in the other variable is cleared.

EXAMPLES: (Assume x= 255, y=
c= x & mask;
c= y & mask;
c= X & 0360;

15, and mask= 00001111 in binary)
(c is now = 15 decimal)
Cc is now = 15 decimal)
(c is now = 240 decimal)

5-7

_,

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

Bitwise inclusive OR
The bitwise inclusive or is used to compare two integer

variables or an integer variable and a mask. For each bit set
(=l) in the mask the corresponding bit in the other variable is
set. For each bit not set in the mask the corresponding bit in
the other variable is ignored.

Examples: (Assume x= 0 I y= 15, and mask = 01010101 binary)

c= X mask (c is now = 85 decimal
c= y mask (c is now = 95 decimal)
c= X 0177 (c is now = 15 decimal)

NOTE: tis used instead of the vertical bar.
(c= x # mask, etc.)

)

Bitwise exclusive OR "A" (XOR)
The "exclusive or" is used to compare two integer

variables or an integer variable and a mask. The comparison is
made on a bit by bit basis. If the bits are the same (both zero
or both one) the result is a zero. If the bit in the mask is
different (mask bit is zero and variable bit is one or vice
versa), the result is a one.

Examples: (Assume x= 227 , y=
c = x - mask
c = y - mask
C = X - 133

187, and mask= 133)
(c is now= 102)
(c is now= 62)
(c is now= 98)

NOTE: The difference between the "inclusive or" and
the "exclusive or" is as follows. In a compound
"inclusive or" expression; for example
"if< a==2 I b==3l"
if either expression is true, the
value is true. In a compound "exclusive or"
expression; for example
"if(a==2 - b==3)"
if both expressions are false or both
expressions are true, the value is false!
Only if one expression (not both) is true, is the
value equal to true.

Left Shift-Right Shift"<<",">>"
An unsigned shift capability is available by using"<<" for

left shift and">>" for right shift.

EXAMPLE: (Assume X= 4)
C = X << 1
C = X >> 2

(C is now equal to 8)
(C is now equal to 1)

5-8

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

EXAMPLE:

integer:

1000
1010
1015
1020
1040
1060
1080
1100

1120
1140

1160
1200

Example of a function to convert an input to an

atoi (s)
chars[];
{

/*converts to integer* /

inti, n;
n = i = O;

/*define i, n as integers*/
/* set i, n to O */

/* While the character is greater than or equal to zero
< 48 decimal in ASCII) and less than or equal to nine
(57 decimal in ASCII) */

while< s [i] >= '0 ' & s [i] <= '9')

/* Set n to ten times n plus the value of the
character (48 to 57 decimal) minus the value of
an ASCII zero (48 decimal) */

{ n = 10 * n + s [i] - 'O';

}

}
return;

++i;
/*
I*
/*

/* incre ment i */
end of statements* /
return to calling program* /
end of function*/

NOTE: Don't forget"{" and"}" are"@" and"$"
respectively

The same program in BASIC for comparison:

REM CONVERT AN INPUT TO INTEGER
DEFINT I,N 'DEFINE I,N AS INTEGER
DIM C$(10) ' INPUT INC$, OUTPUT N
N=O:I=O 'CLEAR N AND I
REM PERFORM THE FOLLOWING WHILE THE CHARACTER
REM IS GREATER THAN OR EQUAL TO 0
REM AND LESS THAN OR EQUAL ·ro 9
REM (ASSUME 10 CHARACTER STRING I NPUT-LSB I N
C$ (10))
FOR I= 1 TO 10
IF C$(I) >= "0" AND C$(I) <= "9" THEN
N= 10 * N + VAL(C$(I)) ELSE RETURN
NEXT I
RETURN

5-9

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

CONTROL FLOW

Statements and Blocks

An expression such as x = 0 or i++ or scanf(...) becomes a
statement when it is followed by a semicolon, as in

X = O;
i++;
scanf (...);

In C, the semicolon";" is a statement terminator.The brace"{"
(@)and"}" ($) are used to group declarations and statements
together into a compound statement or block, syntactically
equivalent to a single statement. Braces surround statements of
a function; multiple statements after an if, else, while, etc.

If - Else

The if-else statement is used to make decisions. Formally, the
syntax is;

if(expression
statement-1

else
statement-2

where the else part is optional. The expression is evaluated; if
it is "true" (if expression has a non-zero value), statement-1 is
performed. If it is false (expression is zero) and if there is
an else part, expression-2 is performed.

INC
if (n > 0)

if (a> b)
z = a;

else
z = b;

else
if(n > 0) {

if(a > b)
z = a;

}

else
z = b;

IN BASIC
100 IF N<=O THEN GOTO 500
150 IF A<= B THEN GOTO 300
200 Z=A: GOTO 500
300 Z=B

500

NOTE: Don't forget"{"="@" and"}"="$"

5-10

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

Else-if

The construction;
if(expression)

statement
else if(expression)

statement
else if(expression

statement
else

statement

is the most general way of writing a multi-way decision.
The expressions are evaluated in order; if any expression is
true, the statement associated with it is executed, and this
terminates the whole chain. The optional else handles the
default case where none of the other conditions were satisfied .

EXAMPLE: This function will search an array "v" and locate the
value "x". The value "n" is the highest location in "v" to
search. The example uses the "else if "construct.

binary (x, v, n) /* find x in v(O] ... v[n-1] */
int x, v[], n;

{

}

While statement

int low, high, mid;
low= O;

/* declare integers*/
/* set low to O */

high= n-1; /* set high to n-1 */
while (low <= high) {

mid= (low+high)/2;
if (x < v[mid])

high= mid-1;
else if(x > v[mid])

else

}
return(-1);

low= mid+l;
/* if x not less

found match*/
return (mid);

and not greater

While(expression) statement

The statement is performed until the expression becomes zero or
false. Since the test is made before the statement is executed
the first time, it need not be executed at all.

while((c = getchar()) == ' I c== ' n' I c== ' t') ;

5-11

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

EXAMPLES:
while (l); /* do forever*/
while (n < 100); /* 100 iteration loop*/

Break and Continue statements

break;

This statement will cause control to be transferred out of the
innermost "while" loop. The next statement to be executed will
be the statement immediately following that loop.

continue;

This statement, used within a "while" loop, will transfAr control
back to the top of the loop.

Return <expression> statement

return; and return (expression);

The" return; " statement does an immediate return from the
current function to the calling function. The" return
(expression); "statement allows a function to return a value
explicitly. In the example below the function" getchar() "ends
with a" return (arg); "where arg contains the character input
at the terminal.
A function normally ends with a return statement, one is
performed regardless. A function may contain several return
statements to indicate various conditions encountered. An error
encountered in a function may cause a" return (-1) "which would
indicate the error condition to the calling function. The
location returned to will be the first executable statement
following the function call. Function calls imbedded in complex
statements will return to the processing of the complex
statement.

Example:
if ((c=getchar()) != "atl)

In this statement the function "getchar()" will be called, the
input character returned, and processing will continue by
assigning the value of the input character to "ctl. Notice the
parentheses around tic= getchar() ti to ensure the proper order of
execution of the statement.

(;) semicolon statement

The semicolon is used as a statement terminator. A
semicolon by itself is considered a null statement which does
nothing but take the place of a statement.

5-12

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

FUNCTIONS AND PROGRAM STRUCTURE

Functions break large computing tasks into smaller onP.s, and
enables modular and efficient coding. C programs generally
consist of numerous small functions rather than a few big ones.
A program may reside on one or more source files in any
convenient way; the source files may be compiled separately and
assembled together, along with compile functions of the libraries
or combined together during the compile.

Each function has the form;

name(argument list, if any)
argument declaration, if any
{

declaration and statements, if any
}

As suggested, the various parts may be absent; a minimal function
is;

dummy() {}

which does nothing.

A Program is just a set of individual function definitions.
Communication between the functions is (in this case) by argument
and values returned by the functions; it can also be via external
variables. The function can occur in any order in the source
file as long as the first function is a main function, preceded
by data definitions. These data definitions will be treated as
external definitions (accessible by all functions).

EXAMPLE:

MAIN: main() /* Compute factorial of input*/
char str[40], strl;
int c,i,k;
i=k=l;
strl =" number you wish factorial of";

while(l) /* do forever*/
{ printf("enter %s", strl)

scanf(%d,&cl
while(c >= i) {
k *= i; /* k = k * i */
i ++}
print£(" Factorial= %d",k)
exit(): }

The functions are "printf","scanf", and "exit" which are all
generated by the compiler.

5-13

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1 . 0

Section 6 . DGS 6809 C RUNTIME LIBRARY

The DGS 6809 C RUNTIME LIBR~RY contains source code of functions
which provide compiler generated functions, input/output
functions, and utility functions. The compiler functions are the
functions which handle statements and procedures which require
excessive amounts of coding to perform .

Compiler Generated Functions:

CCOR - logical OR of two 16 bit values

CCAND - logical AND of two 16 bit values

CCXOR - logical XOR of two 16 bit values

CCASL - arithmetic shift left of a 16 bit value n places

CCASR - arithmetic shift right of a 16 bit value n places

CCCOM - complement a 16 bit value

CCNEG - negate or 2's complement of a 16 bit value

CCMULT - multiply two 16 bit integer values return 16 bit value

CCDIV - divide two 16 bit integer values return 16 bit value

CCMOD - modulo divide two 16 bit values return bit remainder

6-1

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

The next group of functions are input/ouput functions. I/0
facilities are not part of the C language. In order to
communicate externally from a C program the following routines
have been provided. These functions allow communication between
a terminal and the running program, and also the handling of I/0
to a disk file.

Input Output Funtions:

c=getchar()

putchar(c)

- returns the next input character from
terminal and places it in variable c.
allows the users to control the input
terminal.

the user's
This

from his

- puts the character c out to the user's terminal .
This allows the user to control the output of
each character to his terminal.

printf(control, argl, arg2, ... > - formatted output. Printf

EXAMPLE:

converts, formats, and prints the arguments on
the user's terminal. The control string
contains two types of objects; ordinary
characters, which are simply copied to the
output stream, and conversion specifications,
each of which causes conversion and printing
of the next successive argument to printf.
Each conversion specification is introduced
by the character% and ended by a conversion
character. The conversion characters are:

d - The argument is converted to decimal
notation.

c - The argument is taken to be a single
character.

s - The argument is a string; characters from
the string are printed until a null
character is reached.

printf("%d people %s her%c",number,str, 'e')

where: number= integer containing 10
str= char array containing "are"

results output to the terminal:
10 people are here

6-2

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

scanf(control, argl, arg2, ...) - read characters from the user's
terminal, interprets them according to the format
specified in control, and stores the results in
the remaining arguments. The control argument is
described below; the other arguments, each of
which must be a pointer, indicate where the
corresponding converted input should be stored.
Conversion specifications, consist of the
character"%" and the conversion character. An
input field is defined as a string of non-space
characters; it extends either to the next space or
carriage return. The conversion character
indicates the interpretation of the input field;
the corresponding argument must be a pointer as
required by the C language. The following are
the conversion characters:

EXAMPLE:

d - a decimal integer is expected in the input;
the corresponding argument should be an integer
pointer.

c - a single character is expected; the
corresponding argument should be a character
pointer.

h - a short integer 1 byte is expected;
the corresponding argument should be a pointer to
a char.

s - a character string is expected; the
corresponding argument should be a character array
pointer.

scanf("%d%h%c%s",*number,*csd,*cin,strin)
where:

int number;
char csd,cin,strin(];

then typing 100 3 w hello

results in:
number= 100

= 3 csd
cin = w
strin(] = hello

6-3

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

fp = fopen(name, mode, file#)-

EXAMPLE:

Open a disk file. The 1st argument is the name of
the file, as a character string. The second
argument is the mode, also a character string,
which indicates how to use the file. Allowable
modes are read ("r") or write <"w"). The third
argument is an integer (1-4) which indicates the
file number.

NOTE: Opening an existing file for writing ("w") or
opening a non existant file for reading ("r")
will cause an error.

fp=fopen(fildat,"w",filnn)

where: char fildat[l2]
int filnn;
fildat="filename.specification";
char *fp; /*pointer*/

resulting in:
return's status in fp

0 = bad
positive= good

This opens the named file for writing

fcloseCfp) -

EXAMPLE:

c= getcCfp) -

EXAMPLE:

putc(c,fp)

Closes the file specified by the fp. The fp is
a pointer to the file's control block.

fclose(fp);

Read the next character from the file referred to
by fp, and place inc. EOF is indicated by a -1 .

c = getc(c, fp) - read character from the file
referred to by fp and place inc ..

Write the next character to the file referred to
by fp.

6-4

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

EXAMPLE:
char inname[l2];
char c;
int i;
i=O;
while((c=getchar())!=13) /* input to a er*/

{inname[i++]);putc(c,fp);}

the above statements will read from the
terminal into character array inname, and wri t e
to the file referred to by fp.

Utility Functions

The following functions are utility functions which assist
the user in programming his routines. It should be noted again
that the user can add his own functions to this runtime library
or make a separate file of his functions and include them during
compiling (INPUT FROM?),

exit ():

isalpha(c) -

isupper(c) -
islower(c) -

isdigit(c) -

isspace(c) -
toupper(c) -

strcmp(strl,

exits from the running program back to the operating
system.

non-zero if C is alphabetic, 0 if not

non-zero . ,::
l. .L C is upper case, 0 if not

non-zero if C is lower case, 0 if not

non-zero if C is digit, 0 if not

non-zero if C is blank, tab or newline, 0 if not

convert C to upper case

str2) - non-zero string compare, 0 if not

strcpl(strl, str2, length) - non-zero string compare, 0 if not

The users are encouraged to send to DGS functions which t h e y
have implemented and DGS will in turn provide listings of these
functions to other users.

6-5

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

Section 7. THE DIFFERENCES BETWEEN DGS C AND STANDARD C

As stated in the introduction, DGS C is a subset of the
standard UNIX C. All of the basic operators have been provided
in DGS C. The operators that are missing are operators which
provide enhancements to the basic language. With the
operators provided, a user can write a program which will perform
the same as standard C. DGS plans on providing additional
operators in later versions of the compiler.

The following table lists all of the operators which are
available in standard C. The table also indicates those
operators provided by DGS C or the version in which they will be
available and provides an alternate operator to perform the same
operation for C operators not included in this version.

7-1

/

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

STANDARD C DGS avai 1. available version alternate

int yes version 1

char yes version 1

float no version 2

double no version 3

struct no version 3

union no version 3

long no version 2

short no version 2

auto no version 2

register no version 3

typedef no version 3

static no version 3

goto - label no version 2

return yes version 1

sizeof no version 3

break yes version 1

continue yes version 1

if yes version 1

else else if yes version 1

for no version 2 while

do - while no version 2 while

while yes version 1

switch - case no version 3 if-else-if

default no version 3

7-2

--

-

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

Appendix A. SAMPLE DGS 6809 PROGRAM

#define MAXLINE 1000
#define EOF -1
#define EOL 13
#define NULL 0
char line[rnaxline];
/* find all lines matching a pattern*/
main ()
{
while(GETLINE(LINE, MAXLINE) > 0)

if(INDEX(LINE, "THE") >= 0)
printf("%S", LINE);

}

GETLINE(S, lim)
char S [] ;

/* get line into s, return length*/

int lim;
{
int C, I;

I= 0;
while(--lim > 0 & (C=GETCHAR()) != EOF & C != EOL)

S[I++] = C;

}

if(c == EOL)
S(I++] = C;

S[I] = NULL;
return I;

INDEX(S, T)
char S[], T[];
{

/* return index oft ins, -1 if none*?

init I, J, K;
I= O;
while(S[I] != NULL) {

}

}

J = I;
K = 0;
while()t[K] != NULL & S(J] -- T(K])

{ J++; K++; }
if(T(K] == NULL) return I;
I++;

return(-1);

SHELL(V,N) /* SORT V[O] V[N-1] INTO INCREASING ORDER*/
int V[], N;
{
int GAP, I, J, TEMP;

A-1

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

GAP=N/2;
while(GAP>O)
{I=GAP;

}

while(I<Nl
{J=I-GAP;
while((J>=O & (V[J]>V[J+GAP]))

{ TEMP=V[J];
V[J]=V[J+GAP];
V[J+GAP] = TEMP;
J+J-GAP;
}

I++;
}

GAP=GAP/2;
}

#define SIZE 8190
/* Prime number program in C */
char PRIME[8191];
int COUNT,I,J,K,L;
MAIN ()
{

L=O;
while(L,10)
{
COUNT= I= O;

while (I<=SIZE){PRIME[I++]=l;}
I=O;
while(I<=SIZE)

{ if (PRIME[I]] !=O)

++I;
}

{ J=I+I+3; K = I+J;
while(K<=SIZE)

{PRIME[K]=O;
K=K+J; }

COUNT=COUNT+l;
}

printf(11 %D"S/N 11 ,COUNT, 11 PRIMES");
++L;
}
}

A-2

I -

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

Appendix B. DGS 6809 C COMPILER ERROR CODES

The DGS 6809 C compiler indicates syntax errors by pointing
to the offending position within the statement. There is an
attempt to correctly report this, but at times, the error is
really generated in the previous statement. Many error reports
can be encountered if the offending error occurs at the beginning
of a statement. The errors have the following form.

if a>b) data=b;
A* ******MISSING OPEN PAREN******

The following is a list of errors which can be encountered.

MISSING CLOSING BRACKET

OPEN FAILURE - encountered during initial input or output file
request.

INCLUDE OPEN FAILURE - error in opening an #include request.

MUST BE CONSTANT - error in type declaration of an array.

NEGATIVE SIZE ILLEGAL - array declaration with a negative size .

ILLEGAL FUNC OR DECLAR - illegal function call or declaration.

MISSING OPEN PAREN - syntax required an open parenthesis.

ILLEGAL ARG NAME - an illegal character was used argument naming .

EXPECTED COMMA - argument not separated by a comma.

WRONG #ARGS - wrong number of arguments.

ILLEGAL NAME - use of an illegal character in a name.

MISSING SEMICOLON - expected a semicolon in this position.

ILLEGAL SYMBOL NAME - use of different name than was declared.

ALREADY DEFINE - symbol was defined previously.

MISSING BRACKET - missing open or closing bracket.

GLOBAL TABLE OVERFLOW - too many global symbols, resize global
table.

LOCAL TABLE OVERFLOW - too many locals defined in one function .
Resize.

B-1

......

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

TOO MANY AC'rIVE WHILES - resize the WQ table .

MISSING APOSTROPHE - missing closing apostrophe character
declaration.

LINE TOO LONG - more than 80 characters in a line.

OUTPUT FILE ERROR - encountered an error on output .

CAN NOT SUBSCRIPT - using a variable as an array.

ILLEGAL ADDRESS - defining an absolute address incorrectly .

INVALID EXPRESSION - syntax not correct .

STRING SPACE EXHAUSTED - literal table overflow resize .

xx ERRORS IN COMPILATION - indicate how many e r rors encountered .

B-2

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

Appendix C.

VERSION NUMBER

DGS 6809 C COMPILER TROUBLE REPORT

NAME ------------------------
ADDRESS ----------------------
CITY ------------------------
STATE -----------------------
ZIP ---------

DESCRIPTION OF THE PROBLEM;

DESCRIBE CODE USED TO CAUSE PROBLEM

SEND TO: DUGGER'S GROWING SYSTEMS
P.O. BOX 305
SOLANA BEACH, CALIF 92075

C-1

-

-

-

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

I N D E X

!= 5-6,5-12,6-5,A-l
% 5-5
&

*

(&var) 5-6,5-7
2-2,5-3,5-9,5-11,6-2
5-5,5-7,5-9

* (*var)
+

I

5-7
5-5,5-6,5-7
5-5,5-7,5-8
5-5

/* */ 5-3,2-l,4-1,4-2,5-2,
5-4,5-5,A-l,A-2
5-12,2-2,4-1,5-2,5-3,5-4
5-5

< (less than) 5-6,5-11,5-12
<< (left shift) 5-8
<= (lt or eq) 5-6,5-11,A-2
== (identity) 5-6,5-11,A-l
> (gt) 5-6,5-10,5-11,5-12,A-l
>= (gt eq) 5-6,5-9,A-2
>> (right shift) 5-8
@ 2-1,2-2,4-2,5-10,
Argl 2-1,4-1,4-2,6-2
ASCII 3-1
And (&) 5-7,5-6,A-2
Arithernetic Operators 5-5,5-6,5-7,5-8,5-2
Asrn (#asrn) 4-3,5-1
Binary Operators 5-6,5-13,A-l,A-2
Break 5-12
Char 5-2,4-l,5-l,5-3,5-4,5-l3,6-5
Comments 5-3,2-1,4-1,4-2,5-2
Comparison Operators 5-6,5-9,5-10,A-l,A-2
Constants 5-2,5-3,4-2,A-l,A-2
Continue 5-12
Cr 2-1,3-1,3-2
DEC PDP-11 1-1
Data Types 5-2,5-4,5-13,A-l

I-1

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

Declarations 5-3,2-1,4-1,4-2,4-3
Define 4-2,A-l,A-2,B-l
Double Quotes (" ") 5-2, 2-1, 4-1, 5-3, 5-13
Dummy () 5-13,5-12
Else-if 5-11
Endasm (#endasm) 4-3,5-1
Errors b-1,4-3,6-4,7-1
Examples 2-l,3-l,3-2,4-l,4-2,4-3,5-1,5-2,5-3,5-4
Exclusive Or 5-8
Externals 4-3,A-l,A-2,B-l
Fclose 6-4,A-l
Fopen 6-4,A-l
Functions 2-1,4-1,4-2,5-13
Getchar 6-2,6-5
Getc(fp) 6-4,A-l
If-else 5-10,5-11,8-2
In-line Assy Code 4-3,4-1
Include 3-1
Inclusive Or 5-7,5-8
Int 5-3,2-l,4-1,5-1,5-9,5-ll,6-5,7-l
Integer Constant 2-1,5-2
Main () 4-3,5-13,A-l,A-2
Printf 6-2,A-l
Putchar 6-2,6-5
Putc () 6-4
Reserved Words 5-1,5-4
Return 5-12
Right Shift (>>) 5-8
Scanf 6-3,A-l
Statements 5-10,5-11,5-12
Type Modifiers 5-4,5-1,5-2
Unary Operators 5-7,5-13
Undef (#undef) 4-2
Utility Functions 6-5

I-2

Variable
While
[]
{ }

DGS C COMPILER FOR THE COLOR COMPUTER VERSION 1.0

names 5-1,5-4,5-13,A-l,A-2
5-ll,4-l,5-l,8-2,5-13,A-l
5-4,2-2,4-l,5-3,5-5,5-ll,5-l5,6-4,6-5,7-l,A-2
2-l,2-2,4-l,4-2,5-10,5-ll,5-l3,A-l,A-2
(REMEMBER: "{"=@and"}"=$)

(use"#" for XOR) 5-6,5-8,5-11

I-3

	cover
	DGC12_Burke_Notes
	DGC12_Release_Notes
	part1
	part2
	back

